Home
Class 12
MATHS
If (1+x)^n=a0+a1x+a2x^2).....+anx^n then...

If `(1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n` then value of the series ` a_(0)-a_(2) + a_(4)-a_(6) +…..` is

A

`2^(n)cos""(npi)/4`

B

`2^(n-1)cos""(npi)/4`

C

`2^(n-1)cos""(npi)/4`

D

`2^(n/2)cos""(npi)/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Section-F ( Matrix -Match type Question)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n The sum of the series a_(0) +a_(4) +a_(8)+a_(12)+ …… is

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1+x)^n = a_0+a_1x+a_2x^2+......+a_nx^n , find the sum a_0+a_4 + a_8 + a_12 + ….. .

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If e^(e^(x)) = a_(0) +a_(1)x +a_(2)x^(2)+... ,then find the value of a_ (0)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......a_(2)nx^(2n) Find the value of a_(0)+a_(3)+a_(6)+......;!=psi lon N

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)-a_(1)+a_(2)-a_(3)......+a_(2n) ,

If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

If (1 + x)^(2n) = a_(0) + a_(1) x + a_(2) x^(2) +… + a_(2n) x^(2n) , then (a_(0) - a_(2) + a_(4) - a_(6) +…- a_(2n))^(2)+(a_(1) - a_(3) + a_(5) - a_(7) +...+a_(2n-1))^(2) is equal to