Home
Class 12
MATHS
If C(0) , C(1) , C(2) ,…, C(n) are coef...

If `C_(0) , C_(1) , C_(2) ,…, C_(n) ` are coefficients in the
binomial expansion of `(1 + x)^(n)` and n is even , then
`C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) ` is equal to .

A

0 if n is odd

B

`(-1)^(n)` if n is odd

C

`(-1)^(n//2).^(n)C_(n//2)` if n is even

D

`(-1)^(n-1).^(n)C_(n-1)` if n is even

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|11 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-B)|34 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos

Similar Questions

Explore conceptually related problems

If C_0,C_1,C_2,....,C_n are coefficients in the binomial expansion of (1+x)^n and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2, is equal to

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

If C_(0), C_(1), C_(2), …, C_(n) are the coefficients in the expansion of (1+x)^(n) , then what is the value of C_(1) +C_(2) +C_(3) + …. + C_(n) ?

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(0),C_(1),C_(2)..C_(n) denote the coefficients in the binomial expansion of (1+x)^(n), then C_(0)+2.C_(1)+3.C_(2)+.(n+1)C_(n)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =