Home
Class 12
MATHS
In the expansion off (1+x)^(10)=.^(10)C(...

In the expansion off `(1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10)`, then value of
`528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)]` is equal to________.

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-H) Objective type question (Multiple True-False Type Questions)|2 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos

Similar Questions

Explore conceptually related problems

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)

(C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(8))/(10)

Sum of the series S = 3^(-1)(""^(10)C_(0))-""^(10)C_(1)+(3)(""^(10)C_(2))-3^(2)(""^(10)C_(3))+…+3^(9)(""^(10)C_(10)) is

If ^(10)C_(x)=^(10)C_(x+4), find the value of x

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

If (^(10)C_(0))/1+(^(10)C_(1))/2+(^(10)C_(2))/3+.....+(^(10)C_(10))/(11)=(2^(P)-1)/(q) then the value of (p)/(2q) is