Home
Class 12
MATHS
The tens digit of (81)^(100)(121)^(100)-...

The tens digit of `(81)^(100)(121)^(100)-1` is

A

1

B

0

C

9

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the tens digit of \( (81)^{100} \times (121)^{100} - 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the bases in a more manageable form: \[ (81)^{100} = (9^2)^{100} = 9^{200} \] \[ (121)^{100} = (11^2)^{100} = 11^{200} \] Thus, we can rewrite the original expression as: \[ 9^{200} \times 11^{200} - 1 \] ### Step 2: Combine the bases Using the property of exponents, we can combine the bases: \[ 9^{200} \times 11^{200} = (9 \times 11)^{200} = 99^{200} \] So now we have: \[ 99^{200} - 1 \] ### Step 3: Apply the Binomial Theorem Next, we can express \( 99^{200} \) using the binomial expansion: \[ 99^{200} = (100 - 1)^{200} \] Using the Binomial Theorem, we expand this: \[ (100 - 1)^{200} = \sum_{k=0}^{200} \binom{200}{k} 100^{200-k} (-1)^k \] This gives us: \[ = \binom{200}{0} 100^{200} (-1)^0 + \binom{200}{1} 100^{199} (-1)^1 + \binom{200}{2} 100^{198} (-1)^2 + \ldots + \binom{200}{200} 100^{0} (-1)^{200} \] ### Step 4: Identify relevant terms We are interested in \( 99^{200} - 1 \): \[ 99^{200} - 1 = \left( \sum_{k=0}^{200} \binom{200}{k} 100^{200-k} (-1)^k \right) - 1 \] The constant term (when \( k=0 \)) is \( 100^{200} \) and the term for \( k=1 \) is \( -200 \times 100^{199} \). ### Step 5: Simplify the expression The first few terms of the expansion are: \[ 100^{200} - 200 \times 100^{199} + \binom{200}{2} 100^{198} - \ldots \] Subtracting 1 gives: \[ 100^{200} - 200 \times 100^{199} + \binom{200}{2} 100^{198} - 1 \] ### Step 6: Calculate the tens digit To find the tens digit, we need to focus on the last two digits of the expression. The first term \( 100^{200} \) contributes 00, the second term \( -200 \times 100^{199} \) contributes 00, and the third term \( \binom{200}{2} \times 100^{198} \) also contributes 00. The significant term that affects the last two digits will be the \( -1 \): \[ 00 - 1 = -1 \] This means the last two digits are 99. Thus, the tens digit is: \[ \text{Tens digit} = 9 \] ### Final Answer The tens digit of \( (81)^{100} \times (121)^{100} - 1 \) is **9**. ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-I) Objective type question (Subjective Type Questions)|8 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos

Similar Questions

Explore conceptually related problems

The hundred's digit of 3^(100) is

The Unit digit in 5^(100) is

Sum of last three digits of the number N=7^(100)-3^(100) is.

What is the unit’s digit of 121^(121) ?

Sum of the last 3 digits of the number 7^(100)-3^(100) is

The sum of last 3 digits of 3^(100) is

The largest, two digit prime factor of ""^(200)C_(100) is

The tens! digit of 1!+2!+3!+...+29! is