Home
Class 12
MATHS
Prove the equality 1^(2)+2^(2)+3^(2) ...

Prove the equality
`1^(2)+2^(2)+3^(2) . . .+n^(2)=.^(n+1)C_(2)+2(.^(n)C_(2)+.^(n-1)C_(2) . . .+.^(2)C_(2))`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-I) Objective type question (Subjective Type Questions)|8 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos

Similar Questions

Explore conceptually related problems

1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)=

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Prove that C_(0)^(2)+C_(1)^(2)+...C_(n)^(2)=(2n!)/(n!n!)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

(*^(n)c_(0))^(2)+3(.^(n)C_(1))^(2)+5(.^(n)C_(2))^(2)+ ......+(2n+1)(.^(n)C_(n))^(2)