Home
Class 12
MATHS
Find the range of the following function...

Find the range of the following functions
(i) `f(x) = log_(2)(sqrt(x-4) + sqrt(6-x)), 4 le x le 6`
(ii) `f(x) = 9^(x) - 3^(x) + 1`

Text Solution

Verified by Experts

(i) We have
`f(x) = log_(2) (sqrt(x-4) + sqrt(6-x)), 4 le x le 6`
In the domain indicated the function is well defined. To find the range,
let `y = log_(2)(sqrt(x-4) + sqrt(6-x))`
`rArr 2^(y) = sqrt(x-4) + ssqrt(6-x) = t`, say (let `2^(y) = t gt 0`)
`rArr t^(2) = (x-4) + (6-x) + 2 sqrt((x-4)(6-x))`
`rArr t^(2) = 2+2sqrt(-x^(2) + 10 x - 24) rArr t^(2) - 2 = sqrt(1-(x-5)^(2))`
We observe that `0 le sqrt(1-(x-5)^(2)) le 1`, we have
`0 le t^(2) - 2 le 2`
`rArr 2 le t^(2) le 4`
`rArr -2 le t le -sqrt(2)` or `sqrt(2) le t le 2`
But `t = 2^(y) = +ve` always, hence
`sqrt(2) le t le 2`
`rArr 2^(1//2) le 2^(y) le 2^(1)`
`rArr (1)/(2) le y le 1` (`because 2^(y)` is an increasing function)
`rArr R_(f) = [(1)/(2), 1]`
(ii) We have,
`f(x) = 9^(x) - 3^(x) + 1 = (3^(x))^(2) - 2 xx 3^(x) xx (1)/(2) + (1)/(4) + (3)/(4) = (3)/(4) + (3^(x) - (1)/(2))^(2) ge (3)/(4), AA x in D_(f)`
Let `y = t^(2) - t + 1, t = 3^(x) gt 0`
`rArr t^(2) - t + (1-y) = 0`
`rArr t = (1 +-sqrt(1-4(1-y)))/(2) = (1 +- sqrt(4y - 3))/(2)`
For any `y in [(3)/(4), oo)` there always exists one value of t, viz, `t = (1+sqrt(4y-3))/(2)` (observe that t has to be positive) and consequently for eveery `y in [(3)/(4), oo)` there exists one value of `x in R`. Here the range of function is `[(3)/(4), oo)`.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Try Yourself|70 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos

Similar Questions

Explore conceptually related problems

Find the domain of definition of the following functions : (i) f(x) = log_(10) sin (x-3) + sqrt(16 - x^(2)) (ii) f(x) = sqrt((4- |x|)/(7-|x|)) (iii) f(x) = (1)/(sqrt([|x|-1]|-5)) where [x] denotes the greatest integer function.

Find the domain and range of the following functions: (i) f(x) = sqrt((x-1) (3-x)) (ii) f(x) = 11-7 sin x (iii) f(x) = 1-|x|

Find the domain and range of the following functions: f(x)=sqrt(log_(2)(x^(2)+1))

Number of integers in the range of the function f(x)=log_(sqrt(2))(sqrt(x-4)+sqrt(6-x)) is

Domain of the function f(x)=log(sqrt(x-4)+sqrt(6-x))

Find the domain and range of the following functions: (i) f(x) = (1)/(sqrt(x-[x])) (ii) f(x) = sin (log ((sqrt(4-x^(2)))/(1-x)))

Range of the function f(x)=log_(2)((4)/(sqrt(x+2)+sqrt(2-x)))is

Find the domain of the following functions: (i) f(x) = (1)/(sqrt(|x| -x)) (ii) f(x) = sqrt(cos (sin x)) + sin^(-1) ((1 + x^(2))/(2x)) (iii) (1)/(log_(10) (1-x)) + sqrt(x + 2)

Find the domain and range of the following real functions: ( )f(x)=-|x|( ii) f(x)=sqrt(9-x^(2))