Home
Class 12
MATHS
Function f[(1)/(2)pi, (3)/(2)pi] rarr [-...

Function `f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x` is

A

Many-one onto

B

Onto

C

One-one onto

D

Many-one into

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - B) Objective Type Questions (one option is correct)|87 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Try Yourself|70 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos

Similar Questions

Explore conceptually related problems

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1] rarr [0, pi] be two bijective functions, respectively inverse of bijective functions sin : [(pi)/(2), (3pi)/(2)] rarr [-1, 10 and cos : [0, pi] rarr [-1, 1] " then " sin^(-1) x + cos^(-1) x is

Let f be a function defined on [-(pi)/(2), (pi)/(2)] by f(x) = 3 cos^(4) x-6 cos^(3) x - 6 cos^(2) x-3 . Then the range of f(x) is

If f:[(pi)/(2),(3 pi)/(2)]rarr[-1,1] and is defined by f(x)=sin x,thenf^(-1)(x) is given by

Let f:[-pi//2,pi//2] rarr [-1,1] where f(x)=sinx. Find whether f(x) is one-one or not.

The functions f:[-1//2, 1//2] to [-pi//2, pi//2] defined by f(x)=sin^(-1)(3x-4x^(3)) is

Let f(x)=cos(pi(|x|+2[x])) where [.] represents greatest integer function,then then (1) f(x) is neither odd nor even (2)f(x) is non periodic function ( 3 ) Range of f(x) is [-1,1] (4) f(x)=|f(x)| for all x .

Let f:[-(pi)/(3),(2pi)/(3)]rarr[0,4] be a function defined as f(x) as f(x) = sqrt(3)sin x -cos +2 . Then f^(-1)(x) is given by

AAKASH INSTITUTE-RELATIONS AND FUNCTIONS -Assignment (Section - A) Objective Type Questions (one option is correct)
  1. Function f : R rarr R, f(x) = x + |x|, is

    Text Solution

    |

  2. Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

    Text Solution

    |

  3. Function f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x is

    Text Solution

    |

  4. If f : R rarr R, f(x) = sin^(2) x + cos^(2) x, then f is

    Text Solution

    |

  5. If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-...

    Text Solution

    |

  6. The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

    Text Solution

    |

  7. If f(x) = x/(x-1)=1/y then the value of f(y) is

    Text Solution

    |

  8. gof exists, when :

    Text Solution

    |

  9. If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4...

    Text Solution

    |

  10. If f : R rarr R, f(x) = x^(2) - 5x + 4 and g : R^(+) rarr R, g(x) = lo...

    Text Solution

    |

  11. If f : R - {1} rarr R, f(x) = (x-3)/(x+1), then f^(-1) (x) equals

    Text Solution

    |

  12. If function f : R rarr R^(+), f(x) = 2^(x), then f^(-1) (x) will be eq...

    Text Solution

    |

  13. If f(x) = 2 sinx, g(x) = cos^(2) x, then the value of (f+g)((pi)/(3))

    Text Solution

    |

  14. The graph of the function y = log(a) (x + sqrt(x^(2) + 1)) is not sym...

    Text Solution

    |

  15. If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^...

    Text Solution

    |

  16. Given f(x) = (1)/((1-x)), g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then t...

    Text Solution

    |

  17. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  18. If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2 , then f(x)=sin^2x ,g(x)...

    Text Solution

    |

  19. Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0)...

    Text Solution

    |

  20. If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1)...

    Text Solution

    |