Home
Class 12
MATHS
If f(x) = log ((1+x)/(1-x)), then f((2x)...

If `f(x) = log ((1+x)/(1-x))`, then `f((2x)/(1+x^(2)))` is equal to

A

`(f(x))^(2)`

B

`(f(x))^(3)`

C

`2f(x)`

D

3f(x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f\left(\frac{2x}{1+x^2}\right) \) given that \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). ### Step-by-Step Solution: 1. **Substitute the value into the function**: We start by substituting \( \frac{2x}{1+x^2} \) into the function \( f(x) \). \[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right) \] 2. **Simplify the numerator**: The numerator becomes: \[ 1 + \frac{2x}{1+x^2} = \frac{(1+x^2) + 2x}{1+x^2} = \frac{1 + 2x + x^2}{1+x^2} \] 3. **Simplify the denominator**: The denominator becomes: \[ 1 - \frac{2x}{1+x^2} = \frac{(1+x^2) - 2x}{1+x^2} = \frac{1 - 2x + x^2}{1+x^2} \] 4. **Combine the fractions**: Now we can combine the numerator and denominator: \[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{\frac{1 + 2x + x^2}{1+x^2}}{\frac{1 - 2x + x^2}{1+x^2}}\right) = \log\left(\frac{1 + 2x + x^2}{1 - 2x + x^2}\right) \] 5. **Factor the numerator and denominator**: Notice that: - The numerator \( 1 + 2x + x^2 \) can be factored as \( (x+1)^2 \). - The denominator \( 1 - 2x + x^2 \) can be factored as \( (x-1)^2 \). Thus, we have: \[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{(x+1)^2}{(x-1)^2}\right) \] 6. **Use properties of logarithms**: We can use the property of logarithms that states \( \log\left(\frac{a}{b}\right) = \log(a) - \log(b) \): \[ f\left(\frac{2x}{1+x^2}\right) = \log((x+1)^2) - \log((x-1)^2) \] This can be simplified further: \[ = 2\log(x+1) - 2\log(x-1) = 2\left(\log(x+1) - \log(x-1)\right) \] 7. **Express in terms of \( f(x) \)**: Recall that \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). We can express: \[ f(x) = \log(x+1) - \log(x-1) \] Therefore, we can write: \[ f\left(\frac{2x}{1+x^2}\right) = 2f(x) \] ### Final Result: Thus, the result is: \[ f\left(\frac{2x}{1+x^2}\right) = 2f(x) \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

if f(x)=log_(2)((1-x)/(1+x)) then f((2x)/(1+x^(2))) is equal to (A) f(x) (B) 2f(x) (C) -2f(x) (D) (f(x))^(2)

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))

If f(x) = log (x – 2) – 1/x , then

AAKASH INSTITUTE-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. If -1 le [2x^2 -3] lt 2, then x belongs to

    Text Solution

    |

  2. Range of f(x) = (x+2)/(|x+2|)

    Text Solution

    |

  3. If f(x) = log ((1+x)/(1-x)), then f((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  4. The domain of f(x) = log |x| + 1/sqrt|x| + 1/log|x| is R - A where A i...

    Text Solution

    |

  5. The largest set of real values of x for which f(x)=sqrt((x + 2)(5-x))...

    Text Solution

    |

  6. The domain of the function f(x) = (x^(2) + 1)/(ln (x^(2) + 1)) is

    Text Solution

    |

  7. The domain of definition of the function f(x) = log(3//2) log(1//2) lo...

    Text Solution

    |

  8. The domain of the function f(x) = sqrt(log(10) cos (2pi x)) is

    Text Solution

    |

  9. Domain of log([x+1]) (x-1) is ( [.] represents greatest integer func...

    Text Solution

    |

  10. Range of the f(x) = (e^(x) - 1)/(e^(x) + 1)

    Text Solution

    |

  11. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  12. The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

    Text Solution

    |

  13. The range of f(x) = 2+2x +x^(2) is

    Text Solution

    |

  14. The range of the expression 2^(x) + 2^(-x) + 3^(x) + 3^(-x) for x in R...

    Text Solution

    |

  15. Let [], and {} denotes the greatest integer function and fractional fu...

    Text Solution

    |

  16. The range of the function y = f(x) if (34)^(x) + (34)^(y) = 34 equals

    Text Solution

    |

  17. The domain of the function f(x) = (x^(2) -x)/(x^(2) + 2x + 1) is

    Text Solution

    |

  18. Which of the following is a function ?

    Text Solution

    |

  19. Let f(x) = sin^2(x//2) + cos^2(x//2) and g(x) = sec^2x- tan^2x. The tw...

    Text Solution

    |

  20. If f(x) is a polynomial function of the second degree such that, f(-3)...

    Text Solution

    |