Home
Class 12
MATHS
Period of the function f(x) = sin((pi x)...

Period of the function `f(x) = sin((pi x)/(2)) cos((pi x)/(2))` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) \), we will follow these steps: ### Step 1: Identify the periods of the individual functions The function \( f(x) \) is a product of two trigonometric functions: \( \sin\left(\frac{\pi x}{2}\right) \) and \( \cos\left(\frac{\pi x}{2}\right) \). 1. The period of \( \sin(kx) \) is given by \( \frac{2\pi}{k} \). 2. The period of \( \cos(kx) \) is also \( \frac{2\pi}{k} \). ### Step 2: Calculate the period of \( \sin\left(\frac{\pi x}{2}\right) \) For \( \sin\left(\frac{\pi x}{2}\right) \): - Here, \( k = \frac{\pi}{2} \). - Therefore, the period is: \[ T_1 = \frac{2\pi}{\frac{\pi}{2}} = \frac{2\pi \cdot 2}{\pi} = 4 \] ### Step 3: Calculate the period of \( \cos\left(\frac{\pi x}{2}\right) \) For \( \cos\left(\frac{\pi x}{2}\right) \): - Again, \( k = \frac{\pi}{2} \). - Therefore, the period is: \[ T_2 = \frac{2\pi}{\frac{\pi}{2}} = \frac{2\pi \cdot 2}{\pi} = 4 \] ### Step 4: Determine the overall period of the function Since both \( \sin\left(\frac{\pi x}{2}\right) \) and \( \cos\left(\frac{\pi x}{2}\right) \) have the same period of 4, the overall period of the function \( f(x) \) is the least common multiple (LCM) of the individual periods. - The LCM of \( 4 \) and \( 4 \) is \( 4 \). ### Final Answer Thus, the period of the function \( f(x) = \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) \) is: \[ \text{Period} = 4 \] ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - H) Multiple True-False Type Questions|4 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - I) Subjective Type Questions|15 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - E) Assertion - Reason Type Questions|15 Videos
  • PROBABILITY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos

Similar Questions

Explore conceptually related problems

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

The period of sin((pi x)/(2))+cos((pi x)/(3)) is

The period of the function f(x)=cos(pi(x)/(n!))-sin(pi(x)/((n+1)!)) is

The period of the function f(x)=sin((2x+3)/(6pi)) , is

Period of the function f(x)=tan(nx)-pi cos((2 pi x)/(7))+(x)/(sin((2 pi x)/(7)))+11 is (where {.} is fractional part function)

The function f(x) = sin x - x cos pi is

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))