Home
Class 12
MATHS
(i) Let h (x) = underset(x to oo)lim(x^(...

(i) Let `h (x) = underset(x to oo)lim(x^(2n) f(x) + g(x))/(1+x^(2n))`, find h(x) in terms of f(fx) and g(x)
(ii) without using L Hospital rule or series expansion for `e^(x) `evaluate ` underset(x to 0) lim (e^(x) -1-x)/x^(2)`
(iii) ` underset(n to oo) lim [ e^(1/n)/n^(2) + 2 ((e^(1/n))^(2))/n^(2) + 3. ((e^(1/n))^(3))/n^(2)+.......+ n((e^(1/n))^(n))/n^(2)]`
(iv) `underset(x to 0)lim[ (a sin x)/x ] + [ (b tan x)/x]` Where a,b are inegers and [] denotes integral part.
(v) `underset(x to a)lim (sinx/sina)^(1/(x-a))`

Text Solution

AI Generated Solution

Let's solve the given problems step by step. ### Part (i) We need to find \( h(x) = \lim_{x \to \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}} \). 1. **Case 1**: When \( x^{2n} \) is less than 1 (which is not possible as \( x \to \infty \)). - This case does not apply as \( x^{2n} \) will always be greater than 1 for large \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Try youself|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr 0)("Lim")f(x)

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)

Evaluate : underset(x to 1)(lim) ((x+x^(2) + x^(3) +……….+x^(n)) -n)/(x-1)

If underset(x to 0)lim ((sin n x)[(a-n) nx-tan x])/(x^(2))=0 , then the value of a.

Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Prove that underset( n rarr oo)lim x_(n)=1, if x_(n)=(3^(n)+1)/3^(n) .

If phi(x)=lim_(x rarr oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the following is correct

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)