Home
Class 12
MATHS
Find the values of a and b if f is conti...

Find the values of a and b if f is continuous at x=0, where
`f(x)={:{((sinx + cos x)^(cosec x), , - pi/2 lt xlt 0),( a, , x=0 ), ((e^(1//x)+e(2//x)+e^(3//x))/(ae^(-2+1//x ) + be^(-1+3//x)),, 0 lt x lt pi/2):}`

Text Solution

Verified by Experts

we have
f (0) =a
`lim_(x to 0-) f(x)= lim_(h to0) [sin (-h) + cos(-h)]^(cosec(-h))`
` = lim_(h to 0) [ cos h -sinh] ^(cosec h)`
`=lim_(h to 0) [1+ cosh - sinh -1]^(1/(cos h -sin h -1) xx (cos h - sin h -1)/(-sin h ))`
`Rightarrow lim_(x to0)f(x) = lim_(h to 0) [ 1+ cos h - sin h -1] ^((1/(cos h -sin h-1))xx((1+ sin h -cos h)/(sin h ))`
`lim_(h to 0) [1+(cos h -sin h -1) ^((1/(cos h - sin h -1))xxlim_(h to 0) ((2sin^(2)""h/2 + 2 sin ""h/2 cos""h/2)/(2 sin""h/2 cos""h/2)))`
`=e^(lim_(h to 0) (sin ""h/2 + cos ""h/2)/(cos""h/2)) =e " " [ because lim_(x to 0)(1+x)^(1/x) =e]`
Also `lim_(x to0+) f(x) = lim_( h to 0) (1/e^(h) + e^(2/h)+e^(3/h))/(ae^(-2+1/h)+be^(-1+3/h)) =lim_(h to 0) (e^((-2)/h + e^((-1)/h +1)+1))/ ((ae^(-2))e^((-2)/h) + (be^(-1)))`
`(0+0+1)/((ae^(-2))0+be^(-1)) = e/b`
For the function to be continuous at x = 0 we must have
`lim_(x to 0) f(x) =f(0) = lim_(x to 0+) f(x)`
` Rightarrow e =a = e/b`
` Rightarrow a=e and b =1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Try youself|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={((sinx+cosx)^(cosecx),-(pi)/2ltxlt0),(a,x=0),((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(-2+1/x)+be(-1+3/x)), 0ltxlt(pi)/2):} is continuous at x=0 then

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

if f(x) = {:{ (1+x, ,0 le x le2), (3-x, ,2 lt x le3):} Determine the points of discontinuity of the function f (f(x)) (ii) Check the continuity of the function f(x) = [x]^(2) - [x^(2)] (iii) find the values of a and b if f is continuous at x = pi/2 f(x)= {:{((8/5)""^(tan8x)/(tan 5x) , , 0 lt x lt pi//2),(a+4, , x=pi//2), ((1+|cot x|)""^(b|tan x|)/a, , pi/2 lt x lt pi):}

f(x)=(sin x+cos x)^(cosecx),-(pi)/(2)

Let f(x) be defined as follows: f(x)=[((cosx-sinx)^(cose cx),-pi/2ltxlt0),(a,x=0),(((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(2x)+be^(3x)),0ltxltpi/2)] if f(x) is continuous x=0 , then (a)a=1/e(b)a=e(c) b=1/e (d)b=e

Determine a & b so that f is continuous at x = pi/2 whre f(x) = [{:((1-sin^(3)x)/(3 cos^(2)x), if, x lt pi/2),(a, if, x=pi/2),((b(1-sinx))/(pi-2x)^(2), if, x gt pi/2):}

Find the values of A and B if the following function is continuous on [-pi,pi]. f(x) = {((2sinx-sin2x)/x^3,; -pi lt= x lt 0), (Asinx + B cosx,; 0 lt= x lt= pi/2), ((cosecx-1)/(pi//2-x)^2,; pi/2 lt x lt= pi):}

If f(x) is continuous in [-2, 2], where f(x)={:{(x+a", for " x lt 0),(x", for " 0 le x lt 1),(b-x", for " x ge 1):} , then a+b=

If f(x) is continuous in [-2,2], where f(x) = {(x+a,",",x lt 0),(x,",",0 le x lt 1),(b-x,",",x ge 1):} , then