Home
Class 12
MATHS
If x = a( sin theta - theta cos theta) ...

If ` x = a( sin theta - theta cos theta) and y = a ( cos theta + theta sin theta) " find " (dy)/(dx) at theta = pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(\theta = \frac{\pi}{4}\) given the equations \(x = a(\sin \theta - \theta \cos \theta)\) and \(y = a(\cos \theta + \theta \sin \theta)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = a(\sin \theta - \theta \cos \theta) \] Using the product rule and chain rule: \[ \frac{dx}{d\theta} = a\left(\cos \theta - \left(\cos \theta + \theta(-\sin \theta)\right)\right) \] \[ = a\left(\cos \theta - \cos \theta + \theta \sin \theta\right) \] \[ = a\theta \sin \theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = a(\cos \theta + \theta \sin \theta) \] Using the product rule: \[ \frac{dy}{d\theta} = a\left(-\sin \theta + \left(\sin \theta + \theta \cos \theta\right)\right) \] \[ = a\left(-\sin \theta + \sin \theta + \theta \cos \theta\right) \] \[ = a\theta \cos \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\theta \cos \theta}{a\theta \sin \theta} \] \[ = \frac{\cos \theta}{\sin \theta} = \cot \theta \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(\theta = \frac{\pi}{4}\) Now substituting \(\theta = \frac{\pi}{4}\): \[ \frac{dy}{dx} = \cot\left(\frac{\pi}{4}\right) = 1 \] ### Final Answer: \[ \frac{dy}{dx} \text{ at } \theta = \frac{\pi}{4} \text{ is } 1. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If x = a cos theta and y = b sin theta , find (dy)/(dx)

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=sin theta-theta cos theta , y=cos theta+theta sin theta then (d^(2)y)/dx ^2=

If x= e^(theta )(sin theta - cos theta ) , y= e^(theta ) ( sin theta + cos theta ) then (dy)/(dx) at theta =(pi)/(4) is

x=a cos theta,y=a sin theta Find dy/dx

If y=1- cos theta, x =1 - sin theta,then (dy)/(dx) " at " theta = (pi)/(4) is

x=a cos theta,y=b sin theta then find dy/dx

y = cos theta and x = sin theta (dy)/(dx) at theta=(pi)/(4) is :