Home
Class 12
MATHS
If x=a (cos t +log (tan ((t)/(2)) )) ,y...

If ` x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =`

Text Solution

Verified by Experts

The correct Answer is:
tan t

Differentiate separetely and find ` (dy)/(dx) = ((dy)/(dt))/((dx)/(dt))= tan t `
Check , ` (dx)/(dt) ne 0`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)