Home
Class 12
MATHS
d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is ...

`d/(dx) (sin^(-1) "" (2x)/(1+x^(2)))` is equal to

A

`2/(1+x^(2))`

B

` - 2/( 1+x^(2))`

C

` (3(1-x^(2)))/(| 1-x^(2)|(1-x^(2))) , x ne 1`

D

` 2/(1-x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \left( \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) \), we will follow these steps: ### Step 1: Let \( y = \sin^{-1} \left( \frac{2x}{1+x^2} \right) \) We start by defining \( y \) as the inverse sine of the expression \( \frac{2x}{1+x^2} \). ### Step 2: Use the substitution \( x = \tan(\theta) \) To simplify the differentiation, we can use the substitution \( x = \tan(\theta) \). This gives us: \[ \frac{2x}{1+x^2} = \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] ### Step 3: Rewrite \( y \) Now we can rewrite \( y \): \[ y = \sin^{-1}(\sin(2\theta)) = 2\theta \] ### Step 4: Relate \( \theta \) back to \( x \) Since \( x = \tan(\theta) \), we have: \[ \theta = \tan^{-1}(x) \] Thus, we can express \( y \) in terms of \( x \): \[ y = 2\tan^{-1}(x) \] ### Step 5: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 2 \frac{d}{dx} \left( \tan^{-1}(x) \right) \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} \] So we have: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2} \] ### Step 6: Conclusion Thus, the final result is: \[ \frac{d}{dx} \left( \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) = \frac{2}{1+x^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)sin^(2)x

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)(sin^(-1)x+cos^(-1)x) is equal to

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

(d)/(dx){Sin^(-1)(e^(x))} is equal to

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

(d)/(dx)[sin^(-1)((3x-x^(3))/(2))]

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

AAKASH INSTITUTE-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  2. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  3. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |

  4. Differential coefficient of log10 x w.r.t logx 10 is

    Text Solution

    |

  5. Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

    Text Solution

    |

  6. If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

    Text Solution

    |

  7. If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

    Text Solution

    |

  8. If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

    Text Solution

    |

  9. If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  10. Differentiate the following w.r.t.x. The differentiation coneffiecient...

    Text Solution

    |

  11. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  12. If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

    Text Solution

    |

  13. If y = cos^(-1)(cos x) then dy/dx at x = (5pi)/4 is (i)1 (ii)-1 (ii...

    Text Solution

    |

  14. If x=e^y+e^((y+ tooo)) , x >0 , then (dy)/(dx) is equal to........

    Text Solution

    |

  15. if x^y . y^x =16 then dy/dx at (2,2) is equal to

    Text Solution

    |

  16. If y = sin x^(@) " and " u = cos x " then " (dy)/(dx) is equal to

    Text Solution

    |

  17. Let the function y = f(x) be given by x= t^(5) -5t^(3) -20t +7 ...

    Text Solution

    |

  18. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  19. The differential coefficient of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2)...

    Text Solution

    |

  20. If t(1+x^2)=x and x^2+t^2=y then dy/dx at x=2 is

    Text Solution

    |