Home
Class 12
MATHS
Let a = lim(x->0) x cotx and b = lim(x->...

Let `a = lim_(x->0) x cotx` and `b = lim_(x->0) xlog x,` then

A

a =b

B

b gt a

C

a =b+1

D

b =a +1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Let a=lim_(x rarr0)x cot x and b=lim_(x rarr0)x log x then

lim_(x rarr0)(2-cotx)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

lim_(x to 0) (|x|)/x =

lim_(x rarr0)(cotx)^(x)

lim_(x rarr0)(x+1)^(cotx)

lf lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c then value of a + b + c is

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals