Home
Class 12
MATHS
lim(x to 0) (x tan 2x -2x tan x)/((1- co...

` lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2))` equal

A

1

B

`1/3`

C

`1/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \] we will follow these steps: ### Step 1: Rewrite the limit expression We start by rewriting the limit expression using the trigonometric identity for \(\tan\) and \(\cos\): \[ \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \] Thus, we can express \(x \tan 2x\) as: \[ x \tan 2x = x \cdot \frac{2 \tan x}{1 - \tan^2 x} \] ### Step 2: Substitute and simplify Now we substitute this into the limit: \[ \lim_{x \to 0} \frac{x \cdot \frac{2 \tan x}{1 - \tan^2 x} - 2x \tan x}{(1 - \cos 2x)^2} \] Factoring out \(2x \tan x\): \[ = \lim_{x \to 0} \frac{2x \tan x \left( \frac{1}{1 - \tan^2 x} - 1 \right)}{(1 - \cos 2x)^2} \] ### Step 3: Simplify the numerator Now simplify the term in the parentheses: \[ \frac{1}{1 - \tan^2 x} - 1 = \frac{1 - (1 - \tan^2 x)}{1 - \tan^2 x} = \frac{\tan^2 x}{1 - \tan^2 x} \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{2x \tan^3 x}{(1 - \cos 2x)^2 (1 - \tan^2 x)} \] ### Step 4: Use the identity for \(\cos\) Using the identity for \(\cos\): \[ 1 - \cos 2x = 2 \sin^2 x \] So we have: \[ (1 - \cos 2x)^2 = (2 \sin^2 x)^2 = 4 \sin^4 x \] ### Step 5: Substitute back into the limit Now substituting this back into our limit gives: \[ = \lim_{x \to 0} \frac{2x \tan^3 x}{4 \sin^4 x (1 - \tan^2 x)} \] ### Step 6: Rewrite \(\tan\) in terms of \(\sin\) and \(\cos\) We know that: \[ \tan x = \frac{\sin x}{\cos x} \] Thus: \[ \tan^3 x = \frac{\sin^3 x}{\cos^3 x} \] Substituting this into the limit: \[ = \lim_{x \to 0} \frac{2x \frac{\sin^3 x}{\cos^3 x}}{4 \sin^4 x (1 - \tan^2 x)} \] ### Step 7: Simplify further This simplifies to: \[ = \lim_{x \to 0} \frac{2x \sin^3 x}{4 \sin^4 x \cos^3 x (1 - \tan^2 x)} = \lim_{x \to 0} \frac{2x}{4 \sin x \cos^3 x (1 - \tan^2 x)} \] ### Step 8: Evaluate the limit As \(x \to 0\), we know: \[ \frac{\sin x}{x} \to 1 \quad \text{and} \quad \tan^2 x \to 0 \] Thus, the limit evaluates to: \[ = \frac{2}{4 \cdot 1 \cdot 1} = \frac{1}{2} \] ### Final Answer Therefore, the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (x tan 2X - X tan x)/((1 - cos 2X)^(2)) equals

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

lim_(x rarr0)((x tan2x-2x tan x)/((1-cos2x)^(2))) is equal to

lim_(xrarr0) (xtan2x -2x tan x)/((1-cos 2x)^2) , is

underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2)) is

Evaluate lim_(x to 0) (tan x + 4 tan 2x - 3tan 3x)/(x^(2) tan x)

lim_(x to 0) (2x)/(tan3x)=?

Evaluate lim_(x to 0) (tan 5x)/(2x)

AAKASH INSTITUTE-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lf lim(x to 0) (sin x)/( tan 3x) =a, lim( x to oo) (sinx)/x =b , lim( ...

    Text Solution

    |

  2. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  3. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  4. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  5. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  6. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  7. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  8. underset(x to 0)(lim) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  9. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  10. lim(xrarr0) sin(pi cos^2 x)/x^2

    Text Solution

    |

  11. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  12. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  13. lim(x -> oo) ((x-3)/(x+2))^x is equal to

    Text Solution

    |

  14. lim(x to 0){(1+tanx)/(1+sinx)}^("cosec x") is equal to

    Text Solution

    |

  15. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  16. If underset (xrarr0)"lim"(cos+asinbx)^(x/y)=e^(2) then the values of a...

    Text Solution

    |

  17. lim(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

    Text Solution

    |

  18. limx->(2^+) ([x]^3/3-[x/3]^3) is

    Text Solution

    |

  19. The value of f(0) so that f(x) = ((4x^(x)-1)^(3))/(sin(x/4)log(1+(x^...

    Text Solution

    |

  20. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |