Home
Class 12
MATHS
Let alpha and beta be the distinct roo...

Let ` alpha and beta ` be the distinct root of ` ax^(2) + bx + c=0 ` then` lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2))` is equal to

A

`1/2 (alpha-beta)^(2)`

B

`- a^(2)/2 (alpha -beta)^(2)`

C

0

D

`a^(2)/2 (alpha -beta)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given expression: \[ \lim_{x \to 0} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2} \] where \(\alpha\) and \(\beta\) are the distinct roots of the quadratic equation \(ax^2 + bx + c = 0\). ### Step 1: Rewrite the quadratic expression Since \(\alpha\) and \(\beta\) are the roots, we can express the quadratic in factored form: \[ ax^2 + bx + c = a(x - \alpha)(x - \beta) \] ### Step 2: Evaluate the limit We need to evaluate the limit as \(x\) approaches \(\alpha\) (since \(\alpha\) is a root of the quadratic). Thus, we rewrite the limit: \[ \lim_{x \to \alpha} \frac{1 - \cos(a(x - \alpha)(x - \beta))}{(x - \alpha)^2} \] ### Step 3: Use the small-angle approximation As \(x\) approaches \(\alpha\), the expression \(a(x - \alpha)(x - \beta)\) approaches \(0\). We can use the approximation \(1 - \cos(u) \approx \frac{u^2}{2}\) for small \(u\): \[ 1 - \cos(a(x - \alpha)(x - \beta)) \approx \frac{(a(x - \alpha)(x - \beta))^2}{2} \] ### Step 4: Substitute the approximation into the limit Substituting this approximation into our limit gives: \[ \lim_{x \to \alpha} \frac{\frac{(a(x - \alpha)(x - \beta))^2}{2}}{(x - \alpha)^2} \] ### Step 5: Simplify the limit This simplifies to: \[ \lim_{x \to \alpha} \frac{a^2(x - \alpha)^2(x - \beta)^2}{2(x - \alpha)^2} \] Cancelling \((x - \alpha)^2\) from the numerator and denominator: \[ \lim_{x \to \alpha} \frac{a^2(x - \beta)^2}{2} \] ### Step 6: Evaluate the limit Now, substituting \(x = \alpha\): \[ \frac{a^2(\alpha - \beta)^2}{2} \] ### Final Result Thus, the limit evaluates to: \[ \frac{a^2(\alpha - \beta)^2}{2} \] ### Summary The final answer is: \[ \lim_{x \to 0} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2} = \frac{a^2(\alpha - \beta)^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha is repeated roots of ax^(alpha)+bx+c=0 then lim_(x rarr a)(tan(ax^(2)+bx+c))/((x-alpha)^(2)) is

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha, beta are the zeroes of ax^(2)+bx+c , then evaluate : lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2) .

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

AAKASH INSTITUTE-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  2. underset(x to 0)(lim) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  3. Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then ...

    Text Solution

    |

  4. lim(xrarr0) sin(pi cos^2 x)/x^2

    Text Solution

    |

  5. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  6. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  7. lim(x -> oo) ((x-3)/(x+2))^x is equal to

    Text Solution

    |

  8. lim(x to 0){(1+tanx)/(1+sinx)}^("cosec x") is equal to

    Text Solution

    |

  9. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  10. If underset (xrarr0)"lim"(cos+asinbx)^(x/y)=e^(2) then the values of a...

    Text Solution

    |

  11. lim(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

    Text Solution

    |

  12. limx->(2^+) ([x]^3/3-[x/3]^3) is

    Text Solution

    |

  13. The value of f(0) so that f(x) = ((4x^(x)-1)^(3))/(sin(x/4)log(1+(x^...

    Text Solution

    |

  14. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  15. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  16. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  17. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  18. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  19. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  20. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |