Home
Class 12
MATHS
lim(x rarr 1) sec^(-1)(lambda^2/lnx-lamb...

`lim_(x rarr 1) sec^(-1)(lambda^2/lnx-lambda^2/(x-1))` exists then `lambda` belong to

A

`(-oo,sqrt2]`

B

`[sqrt2, oo)`

C

` (-oo,sqrt2] cup [ sqrt2, oo)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - E|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section -B|35 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)sec^(-1)((lambda^(2))/(ln x)-(lambda^(2))/(x-1)) exists then lambda belong to

If lim_(x rarr1)cos ec^(-1)((k^(2))/(ln x)-(k^(2))/(x-1)) exists, then k belongs to the interval exists,

lim_(x rarr 1) ln(1-lnx)/(lnx^2)=

lim_(x rarr oo)((x+lambda)/(x-lambda))^(x)=4 then lambda

lim_(x rarr5)(x^(lambda)-5^(lambda))/(x-5)

Number of integral values of lambda for which limsec ^(-1)((lambda^(2))/(log_(ex))-(lambda^(2))/(x-1)) does not exist is a.1 b.2 c.3 d.4

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If lambda in R and the domain of f(x)=sqrt((log_(lambda)|x-2|)/(|x|)) is [1,2)uu(2,3], then lambda belong to

lim_(x->pi)(2-lambda/x)^(2tan((pipi)/(2lambda)))=1/e, then lambda is equal to -