Home
Class 12
MATHS
Statement -1 : lim( x to 0) (sin x)/x ...

Statement -1 : `lim_( x to 0) (sin x)/x ` exists ,.
Statement -2 : |x| is differentiable at x=0
Statement -3 : If `lim_(x to 0) (tan kx)/(sin 5x) = 3` , then k = 15

A

T F T

B

TTT

C

FFF

D

FFT

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - I|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section -G|3 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan x)/(sin^(2)x)

lim_(x rarr0)(tan2x-x)/(3x-sin x)

lim_(x rarr0)(sin kx)/(x)=

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

Statement-1 : lim_(x to 0-) ("sin"[x])/([x]) = "sin" [x] != 0 , Where [x] is the integral part of x. Statement-2 : lim_(x to 0+) ("sin"[x])/([x]) != 0 , where [x] the integral part of x.

lim_(x rarr0)(x-sin x)/(x^(3)) =

lim_(x rarr0)(sin5x)/(tan3x)

lim_ (x rarr0) (tan x-sin x) / (sin3x-3sin x)