Home
Class 12
MATHS
f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi...

`f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):}`continuous function `AA x in [ 0,pi] " then " 5(a/b)^(2)` equals ....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the pieces of the function meet, specifically at \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Ensure continuity at \( x = \frac{\pi}{4} \) We need to set the left-hand limit equal to the right-hand limit at \( x = \frac{\pi}{4} \): \[ f\left(\frac{\pi}{4}^-\right) = f\left(\frac{\pi}{4}^+\right) \] Calculating \( f\left(\frac{\pi}{4}^-\right) \): \[ f\left(\frac{\pi}{4}^-\right) = a \sqrt{2} \sin\left(\frac{\pi}{4}\right) = a \sqrt{2} \cdot \frac{1}{\sqrt{2}} = a \] Calculating \( f\left(\frac{\pi}{4}^+\right) \): \[ f\left(\frac{\pi}{4}^+\right) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{2} + b \] Setting them equal gives: \[ a = \frac{\pi}{2} + b \quad \text{(1)} \] ### Step 2: Ensure continuity at \( x = \frac{\pi}{2} \) Next, we set the left-hand limit equal to the right-hand limit at \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}^-\right) = f\left(\frac{\pi}{2}^+\right) \] Calculating \( f\left(\frac{\pi}{2}^-\right) \): \[ f\left(\frac{\pi}{2}^-\right) = 2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + b = 0 + b = b \] Calculating \( f\left(\frac{\pi}{2}^+\right) \): \[ f\left(\frac{\pi}{2}^+\right) = a \cos(2 \cdot \frac{\pi}{2}) - b \sin\left(\frac{\pi}{2}\right) = a \cdot (-1) - b = -a - b \] Setting them equal gives: \[ b = -a - b \quad \Rightarrow \quad 2b = -a \quad \Rightarrow \quad a = -2b \quad \text{(2)} \] ### Step 3: Substitute equation (2) into equation (1) Now we substitute \( a = -2b \) into equation (1): \[ -2b = \frac{\pi}{2} + b \] Rearranging gives: \[ -3b = \frac{\pi}{2} \quad \Rightarrow \quad b = -\frac{\pi}{6} \] ### Step 4: Find \( a \) Using \( b = -\frac{\pi}{6} \) in equation (2): \[ a = -2\left(-\frac{\pi}{6}\right) = \frac{\pi}{3} \] ### Step 5: Calculate \( 5\left(\frac{a}{b}\right)^2 \) Now we calculate \( \frac{a}{b} \): \[ \frac{a}{b} = \frac{\frac{\pi}{3}}{-\frac{\pi}{6}} = -2 \] Now, we find \( 5\left(\frac{a}{b}\right)^2 \): \[ 5\left(-2\right)^2 = 5 \cdot 4 = 20 \] ### Final Answer Thus, the value of \( 5\left(\frac{a}{b}\right)^2 \) is: \[ \boxed{20} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise Section - H|2 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

If 0 le x le 2pi and |cos x | le sin x , the

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are