Home
Class 12
MATHS
integrate thisint ( x^2+1)/(x^2-5x+6)dx...

integrate this`int ( x^2+1)/(x^2-5x+6)dx`

Text Solution

Verified by Experts

Since degree of numerator is not less than degree of denominator so this is not a proper rational function.
`:.(x^(2)+1)/(x^(2)-5x+6)=1+(5x-5)/(x^(2)-5x+6)`………`(i)`
Let `(5x-5)/(x^(2)-5x+6)=(5x-5)/((x-2)(x-3))`
`implies(5x-5)/((x-2)(x-3))=(A_(1))/((x-2))+(A_(2))/((x-3))`........`(ii)`
So that, `5x-5=A_(1)(x-3)+A_(2)(x-2)`
Now, equating coefficient of `x` and constant terms on both sides, we get,
`A_(1)+A_(2)=5` and `3A_(1)+2A_(2)=5`
`impliesA_(1)=-5`, `A_(2)=10`
Hence, `(5x-5)/((x-2)(x-3))=(-5)/(x-2)+(10)/(x-3)` [From equation `(ii)`]
`implies(x^(2)+1)/(x^(2)-5x+6)=1-(5)/(x-2)+(10)/(x-3)` [From equation `(i)`]
Integrating both sides,
`int(x^(2)+1)/(x^(2)-5x+6)dx=intdx-int(5)/(x-2)dx+int(10)/(x-3)dx`
`impliesint(x^(2)+1)/(x^(2)-5x+6)dx=x-5log|x-2|+10log|x-3|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Integrate: int(3 x^2)/(x^(3)-1)dx

integrate int(2x+2)/(x^(2)+2x)dx

int(x+1)/(x^2+5x+6)dx=

Integrate: int e^x ((x^2+1)/(x+1)^2) dx.

Integrate: int((5x^(2)-12)dx)/((x^(2)-6x+13)^(2))

Integrate: int 6x(3x^2+7)^7 dx

Find the integral int x^(2)(1-(1)/(x^(2)))dx

Integrate : int ( x / sqrt( 1 + x^2 ) ) dx

int_(2)^(3)(1)/(x^(2)+5x+6)dx =

Find the integral int(x^(3)+5x^(2)-4)/(x^(2))dx