Home
Class 12
MATHS
Evaluate int(0)^(4)(e^(x))/(1+e^(2x))dx...

Evaluate `int_(0)^(4)(e^(x))/(1+e^(2x))dx`

Text Solution

Verified by Experts

Here, Put `e^(x)=timpliese^(x)dx=dt`
When `x=0`, `t=1` and when `x=1`, `t=e`
So, `int_(0)^(1)(e^(x))/(1+e^(2x))dx=int_(1)^(e)(dt)1+t^(2)=[tan^(-1)e-tan^(-1)1]=tan^(-1)e-(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

Evaluate int_(0)^(2)e^(x)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(1)e^(e^(x))(1+xe^(x))dx