Home
Class 12
MATHS
Evaluate -int(2pi)^(0)|sinx|dx...

Evaluate `-int_(2pi)^(0)|sinx|dx`

Text Solution

Verified by Experts

Let `I=-int_(2pi)^(0)|sinx|dx=int_(0)^(2pi)|sinx|dx` (Prop. `P_(1)`)
`=int_(0)^(pi)sinxdx+int_(pi)^(2pi)(-sinx)dx` (Prop. `P_(2)`)
[`:'sinx` is `+ve` in `I` and `II` and `-ve` in `III` and `IV` quadrant] ltbr. `=2+2=4`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(pi)^(2pi)|sinx|dx=?

int_(0)^(2pi)|sinx|dx=?

Evaluate: int_0^(2pi) [2sinx]dx

Find the value of int_0^(2pi) |sinx|dx

int_(-pi/2)^(0) |sinx + cosx| dx

int_(pi/3)^(pi/2) sinx dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx