Home
Class 12
MATHS
Evaluate -int(3pi//2)^(pi//2)[2sinx]dx, ...

Evaluate `-int_(3pi//2)^(pi//2)[2sinx]dx`, when `[.]` denotes the greatest integer function.

Text Solution

AI Generated Solution

To evaluate the integral \(-\int_{3\pi/2}^{\pi/2} [2\sin x] \, dx\), where \([.]\) denotes the greatest integer function (GIF), we can follow these steps: ### Step 1: Reverse the Limits of Integration Using the property of definite integrals, we can reverse the limits of integration when we introduce a negative sign: \[ -\int_{3\pi/2}^{\pi/2} [2\sin x] \, dx = \int_{\pi/2}^{3\pi/2} [2\sin x] \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate: int_((pi)/(2))^(2 pi)[cot^(-1)]dx, where [.] denotes the greatest integer function

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

Prove that int_(-(pi)/(2))^(2 pi)[cot^(-1)x]dx, where [.] denotes the greatest integer function.

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is