Home
Class 12
MATHS
If the function f : [-1,1] to R is conti...

If the function `f : [-1,1] to R` is continuous and even, then show that `int_(0)^(pi//2)f(cos2x)cosxdx=sqrt(2)int_(0)^(pi//4)f(sin2x)cosxdx`.

Text Solution

Verified by Experts

`l=int_(0)^(pi//2)f(cos2x)cosxdx=int_(0)^(pi//2)f(cos{2((pi)/(2)-x)})cos((pi)/(2)-x)dx`
`=int_(0)^(pi//2)f(cos2x)sinxdx`, (`f` is an even function)
Hence, `2I=int_(0)^(pi//2)f(cos2x)(sinx+cosx)dx`
`=sqrt(2)int_(0)^(pi//2)f(cos2x)cos(x-(pi)/(4))dx`
`=sqrt(2)int_(-pi//4)^(pi//4)f(cos{2(u+(pi)/(4))})cosudu`, (setting `x=u+(pi)/(4)`)
`=sqrt(2)int_(-pi//4)^(pi//4)f(-sin2u)cosudu=sqrt(2)int_(-pi//4)^(pi//4)f(sin2u)cosudu` as `f` is even
`=2sqrt(2)int_(0)^(pi//4)f(sin2u)cosuduimpliesI=sqrt(2)int_(0)^(pi//4)f(sin2u)cosudu`
`=sqrt(2)int_(0)^((pi)/(4))f(sin2x)cosxdx`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Show that: int_(0)^( pi/2)f(sin2x)sin xdx=sqrt(2)int_(0)^( pi/4)f(cos2x)cos xdx

int_(0)^(pi//2)x^(2)cosxdx

int_0^(pi/2) (1+sinx)^3cosxdx

int_(0)^( pi/2)sin^(6)x cosxdx

int_(0)^( pi/2)sin^(4)x cosxdx=

int_(0)^((pi)/(2))sin^(4)x cosxdx

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then