Home
Class 12
MATHS
Evaluate the following (i)intx^(4)e^(5...

Evaluate the following
`(i)intx^(4)e^(5x)dx` `(ii) intx^(4)cos5x dx`

Text Solution

Verified by Experts

`(i)` Let us integrate `e^(5x)` and differentiate `x^(4)` successively w.r.t.`x`
`intx^(4)e^(5x)dx=x^(4)((e^(5x))/(5))-(4x^(3))((e^(5x))/(25))+(12x^(2))((e^(5x))/(125))-(24x)((e^(5x))/(625))+24*(e^(5x))/(3125)+C`
We have stopped at `5th` step as the differential coefficient of `24` w.r.t. `x` is `0` hence all further terms will become zero.
Hence `intx^(4)e^(5x)dx=e^(5x)[(x^(4))/(5)-(4x^(3))/(25)+(12x^(2))/(125)-(24x)/(625)+(24)/(3125)]+C`
`(ii)` Let us integrate `cos5x` sucessively and differentiate `x^(4)` successively w.r.t.`x`
We have
`intx^(4)cos5xdx`
`=x^(4)((sin5x)/(5))-(4x^(3))((-cos5x)/(25))+(12x^(2))((-sin5x)/(125))-(24x)((cos5x)/(625))+24((sin5x)/(3125))+C`
`=(x^(4)sin5x)/(5)+(4x^(3))/(25)cosx5x-(12x^(2)sin5x)/(125)-(24cos5x)/(625)+(24sin5x)/(3125)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

intx^(4)e^(2x)dx=

Evaluate the following integrals: intx^(2)e^(x)dx

Evaluate the following integrals: intxe^(x)dx

Evaluate the following integrals: intx^(2)e^(3x)dx

Evaluate the following integrals: intxe^(2x)dx

intx^3e^(x^2)dx

Integrate the following : intx^(5)dx

Evaluate each of the following integrals: intx^4dx (ii) intx^(5/4)dx int1/(x^5)dx (iv) int1/((x^3)/2)dx int3^xdx (vi) int1/(3sqrt(x^2))dx int3^2log3^xdx (viii) int(log)_xxdx

intx^4/(1+x^2)dx

intx^(5).e^(x^(2))dx=