Home
Class 12
MATHS
The value of the integral int (cos^3x+co...

The value of the integral `int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx` is (A) `sin x-6tan^(-1) (sin x)+C` (B) `sin x-2 (sin x)^(-1)+C` (C) `sin x-2 (sin x)^(-1)-6tan^(-1) (sin x)+C` (D) `sin x-2 (sin x)^(-1)+5tan^(-1) (sin x)+C`

Text Solution

Verified by Experts

Let `f(sinx,cosx)=(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)`
`impliesf(sinx,cosx)=-(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)=-f(sinx,cosx)`
`:.` Let us substitute `sinx=t`
so that `cosxdx=dt`
Thus `int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=int((cos^(2)x+cos^(4)x))/(sin^(2)x+sin^(4)x)cosxdx`
`=int((1-sin^(2)x)+(1-sin^(2)x)^(2))/(sin^(2)x+sin^(4)x)dx`
`=int(1-t^(2)+1+t^(4)-2t^(2))/(t^(2)+t^(4))dt`
`=int(2-3t^(2)+t^(4))/(t^(2)+t^(4))dt`
`=int((t^(2)-2)(t^(2)-1))/(t^(2)(1+t^(2)))dt`
`=int(1+(2)/(t^(2))-(6)/(1+t^(2)))dt`
`=t-(2)/(t)-6tan^(-1)t+C`
`=sinx-2cosecx-6tan^(-1)(sinx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is (A) sin x-6tan^(-1)(sin x)+C(B)sin x-2(sin x)^(-1)+C(C)sin x-2(sin x)^(-1)+6tan^(-1)(sin x)+C(D)sin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C

The value of the integral int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is sin x-6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+Csin x-2(sin x)^(-1)+6tan^(-1)(sin x)+Csin x-2(sin x)^(-1)+5tan^(-1)(sin x)+C

int(cos^3x+cos^5x)/(sin^2x+sin^4x)dx= (A) sinx-6tan^-1(sinx)+c (B) sinx-2(sinx)^-1-6tan^-1(sinx)+c (C) sin^-1x-2(sinx)^-1+5tan^-1(sinx)+c (D) none of these

Evaluate int sin2x tan^(-1)(sin x)dx

int(cos x+sin x)/(cos x-sin x)(1-sin2x)dx

tan^(-1)[(2cos x-3sin x)/(3cos x+2sin x)]

Evaluate: int sin2x tan^(-1)(sin x)dx

int(dx)/((sin x+4)(sin x-1))=(1)/((tan x)/(2)-1)+B tan^(-1)f(x)+c

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

The integral int((sin2x+cos^(2)x)dx)/(1+sin^(2)x(sin2x-cos^(2)x)) is equal to