Home
Class 12
MATHS
Evaluate: inte^(xsinx+cosx){(x^4cos^3x-x...

Evaluate: `inte^(xsinx+cosx){(x^4cos^3x-xsinx+cosx)/(x^2cos^2x)}dx`

Text Solution

Verified by Experts

We have,
`inte^((xsinx+cosx)){(x^(4)cos^(3)x-xsinx+cosx)/(x^(2)cos^(2)x)}dx`
`=inte^((xsinx+cosx)){x^(2)cosx-(xsinx-cosx)/((xcosx)^(2))}dx`
`=inte^((xsinx+cosx))(x^(2)cosx)dx-inte^((xsinx+cosx))(d)/(dx)((1)/(xcosx))`
`=intx{e^((xsinx+cosx))*(xcosx)}dx-inte^((xsinxcosx))(d)/(dx)((1)/(xcosx))`
Integrating it by parts, we get
`inte^((xsinx+cosx)){(x^(4)cos^(3)x-xsinx+cosx)/(x^(2)cos^(2)x)}dx`
`=intxe^(xinx+cosx)d(xsinx+cosx)-inte^((xsinx+cosx)*d((1)/(xcosx))`
`=xe^(xsinx+cosx)-int1*e^(xsinx+cosx)dx-{e^(xsinx+cosx)*(1)/(xcosx)-inte^(xsinx+cosx)*(xcosx)/(xcosx)dx}+K`
`=xe^(xsinx+cosx)-(1)/(xcosx)e^(xsinx+cosx)+K`
`=(x-(1)/(xcosx)e^(xsinx+cosx))+K`, where `K` is a constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1+2xsinx-cosx)/(x(1-cosx))dx

int (cosx)/(cos 3x)dx

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

inte^(x)(sinx+cosx)/(cos^(2)x)dx=

Evaluate: int(x^2+42)/(xsinx+7cosx)^2dx

int(xcosx)/(xsinx+cosx)dx=

Evaluate: int(x^2+6)/(xsinx+3cosx)^2dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

int (cos2x)/(cosx) dx=

int(cos2x)/(sinx+cosx)dx=