Home
Class 12
MATHS
In = int0^(pi/4) tan^n x dx , then the v...

`I_n = int_0^(pi/4) tan^n` x dx , then the value of `n(l_(n-1) + I_(n+1))` is

Text Solution

Verified by Experts

`inttan^(n)xdx=inttan^(n-2)x*tan^(2)xdx`
`=inttan^(n-20x(sec^(2)x-1)dx`
`=inttan^(n-2)x*sec^(2)xdx-inttan^(n-2)xdx`
`=inttan^(n-2)x.d(tanx)-intan^(n-2)xdx`
`=(tan^(n-1)x)/(n-2+1)-inttan^(n-2)xdx`
`:.inttan^(n)xdx=(tan^(n-1)x)/(n-1)-inttan^(n-2)xdx`
Now `l_(n)=int_(0)^((pi)/(4))tan^(n)xdx`
`=[(tan^(n-1)x)/(n-1)]_(0)^((pi)/(4))-int_(0)^((pi)/(4))tan^(n-2)xdx`
`=(1)/(n-1)-int_(0)^((pi)/(4))tan^(n-2)xdx`
`impliesl_(n+1)=(1)/(n)-int_(0)^((pi)/(4))tan^(n-1)xdx` (changing `n` to `n+1`)
`impliesl_(n+1)=(1)/(n)-l_(n-1)`
`impliesn(l_(n+1)+l_(n-1))=1`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .