Home
Class 12
MATHS
Evaluate int(0)^(pi)sin^(3)x*cos^(4)xdx...

Evaluate `int_(0)^(pi)sin^(3)x*cos^(4)xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} \sin^3 x \cos^4 x \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( \sin^3 x \) as \( \sin x \cdot \sin^2 x \): \[ I = \int_{0}^{\pi} \sin x \cdot \sin^2 x \cdot \cos^4 x \, dx \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can substitute: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)sin^(3)x*cos^(3)xdx

int_(0)^( pi)sin^(3)x cos^(3)xdx

int_(0)^( pi/2)sin^(3)x*cos^(2)xdx

int_(0)^( pi)sin^(3)x cos^(6)xdx

Evaluate int_(0)^(2 pi)sin^(2)x cos^(4)xdx=

int_(0)^(2 pi)sin^(3)x cos^(2)xdx

int_(0)^( pi)sin^(8)x cos^(6)xdx

"int_(0)^( pi)sin^(7)x cos^(3)xdx

int_(0)^( pi/2)sin^(2)x cos^(3)xdx

int_(0)^( pi)x sin^(7)x cos^(6)xdx