Home
Class 12
MATHS
The value of lim(n to oo) sum(r=1)^(n)(...

The value of `lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3))` is -

Text Solution

Verified by Experts

We write `t_(r )` in the form `t_(r )=(1)/(n)f((r )/(n))`
`t_(r )=(r^(2))/(r^(3)+n^(3))=(1)/(n)*(r^(2)n)/(r^(3)+n^(3))=(1)/(n)*(((r )/(n))^(2))/(1+((r)/(n))^(3))`
Lower limit of `r=1 :. ` lower limit of integration `=lim_(ntooo)(1)/(n)=0`
Upper limit of `r=n :. ` upper limit of integration `=lim_(ntooo)(n)/(n)=1`
Now,
`lim_(ntooo)sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3))=int_(0)^(1)(x^(2))/(1+x^(3))dx`
`=(1)/(3)int_(0)^(1)(3x^(2))/(1+x^(3))dx`
`=(1)/(3)int_(0)^(1)(d(1+x^(3)))/(1+x^(3))`
`=(1)/(3)[ln(1+x^(3))]_(0)^(1)`
`=(1)/(3)[ln2-ln1]`
`=(1)/(3)ln2`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .