Home
Class 12
MATHS
Evaluate lim(ntooo)(1)/(n)[sin^(2k).(pi)...

Evaluate `lim_(ntooo)(1)/(n)[sin^(2k).(pi)/(2n)+sin^(2k).(2pi)/(2n)+....+sin^(2k).(pi)/(2)]`

Text Solution

Verified by Experts

`r^(th)term t_(r )=(1)/(n)*sin^(2k)(rpi)/(2n)`, where `r` varies from `1` to `n`
Given limit `=lim_(ntooo)sum_(r=1)^(n)(1)/(n)sin^(2k)(rpi)/(2n)`
`=int_(0)^(1)sin^(2k)((pi)/(2)x)dx`
`=(2)/(pi)int_(0)^((pi)/(2))((sin^(2k)t)dt` (Setting `t=(pi)/(2)x`)
`=(2)/(pi)*((2k-1))/(2k)*((2k-3))/((2k-2))..........(3)/(4)*(1)/(2)*(pi)/(2)`
`=((2k-1)(2k-3)......3.1)/(2k(2k-2)........4.2)`
`=((2k-1)(2k-3)......3.1)/(2^(k)k(k-1)......1)`
`=((2k-1)(2k-3).....3.1)/(2^(k)(k!))`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

The value of lim_( n to oo) (1)/(n) ( sin (pi/ n) + sin (2pi/n) + …+ sin (n pi/ n) ) is

Evaluate: lim_(x rarr oo)sin^(n)((2 pi n)/(3n+1)),n in N

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals:

sin m((pi)/(2)+x)+cos n((pi)/(2)-x)

Let F(x)=(1+sin((pi)/(2k))(1+sin(k-1)(pi)/(2k))(1+sin(2k+1)(pi)/(2k))(1+sin(3k-1)(pi)/(2k)) The value of F(1)+F(2)+F(3) is equal to

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :