Home
Class 12
MATHS
int((secx)/(secx-tanx))dx equals...

`int((secx)/(secx-tanx))dx` equals

A

`secx-tanx+C`

B

`log|secx+tanx|+C`

C

`log|secx-tanx|+C`

D

`secx+tanx+C`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

intsecx/(secx+tanx)dx

int(secx)/(log(secx+tanx))dx=

Evaluate int(secx)/((secx+tanx)) dx .

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int(tanx)/(secx+tanx)dx=

intsecxlog(secx+tanx)dx

int(1)/(a secx+b tanx)dx=

int(1)/(secx+tanx)dx=

int sec x log(secx+tanx)dx=