Home
Class 12
MATHS
intf(x)dx=2(f(x))^3+C ,and f(0)=0 then ...

`intf(x)dx=2(f(x))^3+C` ,and `f(0)=0` then `f(x)` is (A) `x/2` (B) `x^2/2` (C) `sqrt(x/3)` (D) `2 sqrt(x/3)`

A

`(x)/(2)`

B

`sqrt((x)/(3))`

C

`2sqrt((x)/(3))`

D

`(x^(2))/(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int f(x)dx=2(f(x))^(3)+C, and f(0)=0 then f(x) is (A) (x)/(2)(B)(x^(2))/(2)(C)sqrt((x)/(3))(D)2sqrt((x)/(3))

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If f(x)=(x^(2)-1)/x^(3) , then intf(x)dx is

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

The function y=f(x) is the solution of the differential equation [dy]/[dx]+[xy]/[x^2-1]=[x^4+2x]/sqrt[1-x^2] in (-1, 1), satisfying f(0)=0. Then int_[-sqrt3/2]^[sqrt3/2] f(x)dx is (A) pi/3 - sqrt3/2 (B) pi/3 - sqrt3/4 (C) pi/6 - sqrt3/4 (D) pi/6 - sqrt3/2

If f and g are real functions defined by "f(x)=2x-1" and g(x)=x^(2) then (A) (3f-2g)(1)=1 (B) (fg)(2)=10 (C) g^(3)(2)=128 (D) ((sqrt(f))/(g))(2)=(sqrt(3))/(2)

If int((x+1))/(sqrt(2x-1))dx=f(x)sqrt(2x-1)+C. Then f(x) is equal to (A)(x+4)/(3) (B) (x+3)/(4) (C) (2)/(3)(x+2)(D)x+4