Home
Class 12
MATHS
int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equal...

`int(sin2x)/(2cos^(2)x+3sin^(2)x)dx` equals

A

`log(2+sinx)+C`

B

`log(2+cos^(2)x)+C`

C

`log(2+sin^(2)x)+C`

D

`log(2+cosx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin 2x}{2 \cos^2 x + 3 \sin^2 x} \, dx, \] we can follow these steps: ### Step 1: Rewrite the denominator We can rewrite the denominator \(2 \cos^2 x + 3 \sin^2 x\) as follows: \[ 2 \cos^2 x + 3 \sin^2 x = 2 \cos^2 x + 2 \sin^2 x + \sin^2 x = 2(\cos^2 x + \sin^2 x) + \sin^2 x. \] Using the Pythagorean identity \(\cos^2 x + \sin^2 x = 1\), we have: \[ 2 \cos^2 x + 3 \sin^2 x = 2(1) + \sin^2 x = 2 + \sin^2 x. \] ### Step 2: Substitute for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{2 + \sin^2 x} \, dx. \] ### Step 3: Use substitution Let \(t = \sin x\). Then, \(dt = \cos x \, dx\), or \(dx = \frac{dt}{\cos x}\). Since \(\cos^2 x = 1 - \sin^2 x = 1 - t^2\), we have \(\cos x = \sqrt{1 - t^2}\). Therefore, the integral becomes: \[ I = \int \frac{2t \sqrt{1 - t^2}}{2 + t^2} \cdot \frac{dt}{\sqrt{1 - t^2}} = \int \frac{2t}{2 + t^2} \, dt. \] ### Step 4: Integrate Now we can integrate: \[ I = 2 \int \frac{t}{2 + t^2} \, dt. \] Using the substitution \(u = 2 + t^2\), we have \(du = 2t \, dt\) or \(dt = \frac{du}{2t}\). Thus, the integral becomes: \[ I = 2 \cdot \frac{1}{2} \int \frac{1}{u} \, du = \int \frac{1}{u} \, du = \ln |u| + C = \ln |2 + t^2| + C. \] ### Step 5: Substitute back Now substituting back \(t = \sin x\): \[ I = \ln |2 + \sin^2 x| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin 2x}{2 \cos^2 x + 3 \sin^2 x} \, dx = \ln(2 + \sin^2 x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(3-2 cos2x)dx

Evaluate: (i) int(sin2x)/(a cos^(2)x+b sin^(2)x)dx (ii) int(cos x)/(2+3sin x)dx

int (dx)/((cos ^(2)x-3sin^(2)x))=?

int(cos 2x-sin 2x)/(cos2x+sin2x)dx

Evaluate int(sin2x)/(a^2cos^2x+b^2sin^2x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

(int x cos^(3)x^(2)sin x^(2))dx