Home
Class 12
MATHS
int(dx)/(e^(x)+e^(-x)) equals...

`int(dx)/(e^(x)+e^(-x))` equals

A

`tan^(-1)(e^(-x))+C`

B

`tan^(-1)(e^(x))+C`

C

`log|e^(x)-e^(-x)|+C`

D

`log(e^(x)+e^(-x))+C`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(2x))

int(dx)/(e^(x)+4e^(-x))=

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)+2) is equal to

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to (A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

inte^(x)(e^(x)-e^(-x))dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

(2) int(1)/(e^(x)+e^(-x))dx is equal to