Home
Class 12
MATHS
int loge xdx = int 1/(logx e) dx =...

`int log_e xdx = int 1/(log_x e) dx = `

A

`loglog_(x)e+C`

B

`(1)/((log_(x)e)^(2))+C`

C

`xlog_(e)((x)/(e))+C`

D

`e^(x)+C`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (Only one answer)|64 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int log e^(x)dx=

int e^(log_(e)x)dx

int e^(-log x)dx=

int sin(log_(e)x)dx

int log_(e)(1+x)dx

int log_(e)x^(2)dx

int e^(a log_(e)x)dx

int e^(x log a)dx

int2^(log_(e)x)dx

int e^(ln x)dx