Home
Class 12
MATHS
int(1)/(x)ln((x)/(e^(x)))dx=...

`int(1)/(x)ln((x)/(e^(x)))dx=`

A

`(1)/(2)e^(x)-lnx+C`

B

`(1)/(2)lnx-e^(x)+C`

C

`(1)/(2)ln^(2)x-x+C`

D

`(e^(x))/(2x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Linked Comprehension Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Competition level Questions|76 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int ln((1)/(e^(x)))dx

int(ln(e^(x)+1))/(e^(x))dx

Evaluate: int(x+1)e^(x)log(xe^(x))dx

int log((1)/(e^(x)))dx

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

int(ln(1+e^(x))-x)/(1+e^(x))dx equals:

int e^(x)(ln x+(1)/(x^(2)))dx

"int_(1)^(e)(1+log x)/(x)dx=

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

int_(1)^(e)(1+log x)/(x)dx=