Home
Class 12
MATHS
STATEMENT-1 : int tan5xtan3xtan2xdx is e...

STATEMENT-1 : `int tan5xtan3xtan2xdx` is equal to `(log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c`
and
STATEMENT-2: `tan5x-tan3x-tan2x=tan5xtan3xtan2x`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Linked Comprehension Type Questions|7 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

inttan2xtan3xtan5xdx=

tan 5x tan3x tan2x=

int tan2x tan3x tan5xdx

int tan2x tan3x tan5xdx

Evaluate: int tan2x tan3x tan5xdx

int tan^(3)2x*sec2xdx

The value of int tan^(3)2x sec2xdx is equal to

int x tan x sec^(2)xdx=

inttan(x-theta)tan2xtan(x+theta)dx

int sec^(3)x tan^5 xdx