Home
Class 12
MATHS
STATEMENT-1 : int(e^(log(1+(1)/(x^(2))))...

STATEMENT-1 : `int(e^(log(1+(1)/(x^(2)))))/(x^(2)+(1)/(x^(2)))dx=(1)/(sqrt(2))tan^(-1).(x^(2)-1)/(sqrt(2)x)+c
and
STATEMENT-2 : `e^(logx)` is equal to `x` if `x gt 0`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Linked Comprehension Type Questions|7 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int e^(ln(1+(1)/(x^(2))))*(x(x^(2)-1))/(x^(4)+1)dx=

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int(e^(x)-(1)/(x)+(2)/(sqrt(x^(2)-1)))dx,|x|>1

int(e^(x)-(1)/(x)+(2)/(sqrt(x^(2)-1)))dx,|x|>1

int(e^(x)-(1)/(x)+(2)/(sqrt(x^(2)-1)))dx,|x|>1

int((sqrt(x^(2)+1)(ln(x^(2)+1)-2ln x)))/(x^(4))dx

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx