Home
Class 12
MATHS
STATEMENT-1 : If n in N int(-n)^(n)(-1)^...

STATEMENT-1 : If `n in N int_(-n)^(n)(-1)^([x])dx=2n`
and
STATEMENT-2 : `(-1)^([x])` is odd if `x is odd integer

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Linked Comprehension Type Questions|7 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If n in N, then int_(-n)^(n)(-1)^([x])dx equals

If n in N , then int_(-n)^(n)(-1)^([x]) dx equals

int(2x^(n-1))/(x^(n)+3)dx

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

int x ^ (2n-1) cos x ^ (n) dx