Home
Class 12
MATHS
Let f be a function satisfying f''(x)=x^...

Let `f` be a function satisfying `f''(x)=x^(-(3)/(2))`, `f'(4)=2` and `f(0)=0`. Then `f(784)` equals……..

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Aakash Challengers Questions|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Multiple True-False Questions|4 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(f(x))/(3+4f(x))dx is equal to

Let f be a continuous function satisfying f'(In x)=[1 for 0 1 and f(0)=0 then f(x) can be defined as

Let f be a one-one function satisfying f'(x)=f(x) then (f^(-1))''(x) is equal to

Let f(x) be a polynomial satisfying f(0)=2f'(0)=3 and f'(x)=f(x) then f(4) equals

Let f:R rarr R be a function satisfying Lim_(xrarr0^(+))f(x)=2 , Lim_(xrarr0^(-)) f(x)=3 and f(0)=4 The value of (Lim_(xrarr0) f(x^(3)-x^(2)))/(Lim_(xrarr0) f(2x^(4)-x^(5)))=

Let f:W rarr W be a given function satisfying f(x)=f(x-1)+f(x-2) for x<=2. If f(0)=0 and f(1)=1, ther find the value of f(2)+f(3)+f(4)+f(5)+f(6)

Let f :R to R be a function such that f(x) = x^3 + x^2 f' (0) + xf'' (2) , x in R Then f(1) equals: