Home
Class 12
MATHS
Prove that int0^oo[n e^(-x)]dx=1n((n^n)...

Prove that `int_0^oo[n e^(-x)]dx=1n((n^n)/(n !)),w h e r en` is a natural number greater than 1 and [.] denotes the greatest integer function..

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Subjective Type Questions|13 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(oo)[ne^(-x)]dx=ln((n^(n))/(n!)), wheren is a natural number greater than 1 and [.] denotes the greatest integer function..

Evaluate int_(0)^(a)[x^(n)]dx, (where,[*] denotes the greatest integer function).

lim_(x rarr o+)(log x^(n)-[x])/([x]), n being a natural number and [x] denotes greatest integer function.

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

int_(-n)^(n)(-1)^([x])backslash dx when n in N= in all of these [.] denotes the greatest integer function

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

If n in N , the value of int_(0)^(n) [x] dx (where [x] is the greatest integer function) is

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

The solution set of the equation [n]^(2)+[n+1]-3=0 (where [. ] denotes greatest integer function is

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is