Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)/(1+t+t^(2)), AA...

If `f(x)=int_(1)^(x)(logt)/(1+t+t^(2))`, `AAx ge 1`, then `f(2)` is equal to

A

`f(0)`

B

`f(1)`

C

`f((1)/(2))`

D

`f(4)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Subjective Type Questions|13 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

If f(x)=int_(1)^(x)(log t)/(1+t+t^(2))dx AA x<=1, then prove that f(x)f((1)/(x))

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))