Home
Class 12
MATHS
Evaluate : int(e^(5logx)-e^(4logx))/(e^(...

Evaluate : `int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx`.

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Aakash Challengers Questions|12 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

e^(x+2logx)

Evaluate : int e^([log(x+1)-logx])dx

Evaluate : int(logx)^(2)dx .

Evaluate: int(logx)/((1+logx)^2)\ dx

int(logx)/(x(1+logx)(2+logx))dx=

Evaluate: int[tan(logx)+sec^2(logx)]dx

Evaluate int sin(logx)dx .