Home
Class 12
CHEMISTRY
Calculate the number of geometrical isom...

Calculate the number of geometrical isomers in the following polyenes.
(i) `H_(3)C-CH=CH-CH=CH-CH=CH-CH=CH-Br`
(ii) `H_(3)C-CH=CH-CH=CH-CH=CH-CH=CH-CH_(3)`
(iii) `C_(6)H_(5)-CH=CH-CH=CH-CH=CH-C_(6)H_(5)`
(iv) `C_(6)H_(5)-CH=CH-CH=CH-Cl`

Text Solution

Verified by Experts

(i) The molecule has four double bonds and cannot be divided into two equal halves unsymmetrical the number of geometrical isomers `=2^((n-1))+2^((n//2)-1)`
`=2^(3)+2^(1)=8+2=10`
(iii) The molecule has three double bonds (odd number).
The number of geometrical isomers `=2^((n-1))+2^((n+1)/(2)-1)`
`=2^(2)+2^(2-1)=4+2=6`
(iv) The molecule has two double bonds and is unsymeetrical The number of geometrical isomers `=2^(n)=2^(3)=4`
Promotional Banner

Topper's Solved these Questions

  • ISOMERISM (STRUCTURAL AND STEROISOMERISM)

    OP TANDON|Exercise Illustrations|14 Videos
  • ISOMERISM (STRUCTURAL AND STEROISOMERISM)

    OP TANDON|Exercise Problems for prac.|23 Videos
  • HALOALKANES AND HALOARENES

    OP TANDON|Exercise Single Interger answer type questions|14 Videos
  • ORGANIC COMPOUNDS CONTAINING NITROGEN

    OP TANDON|Exercise Single integer|8 Videos

Similar Questions

Explore conceptually related problems

C_(6)H_(5)-CH=CH-CO-CH_(3)

The number of geometrical isomers of the compound is C_(6)H_(5)-CH=CH-CH=CH-COOH

No. of geometrical isomers possible for the compound CH_(3)-CH=CH-CH=CH-C_(2)H_(5)

Indicate the number of sigma -and pi -bonds in the following molecules: (i) CH_(3)-C-=C-H (ii) CH_(3)-CH=CH_(2) (iii) H_(2)C=C=CH_(2) (iv) CH_(3)-CH_(2)-CH_(3) (v) H_(2)C=C-CH-CH_(3) (vi) HC=C-CH=CHCH_(3) (vii) H_(2)C =CH-C-=N (viii) CH_(3)OH (ix) CH_(3)-C-=N (x) CH_(3)NO_(2) (xi) CH_(2)CI_(2) (xii) C_(6)H_(12) (Hexene)