Home
Class 12
MATHS
y=tan^(-1)[(sqrt(1+a^(2)x^(2))-1)/(ax)]...

y=tan^(-1)[(sqrt(1+a^(2)x^(2))-1)/(ax)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the functions with respect to x:tan^(-1){(sqrt(1+a^(2)x^(2))-1)/(ax)},x!=0

tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax)) where x!=0, is

Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

y = "tan"^(-1)((sqrt(1 + a^2x^2 ) - 1)/(ax)) implies (1 + a^2x^2)y^('') + 2a^2 xy^' =

Differentiate tan^(-1)((sqrt(1 + a^2 x^2) - 1)/(ax)) w.r.t.x.

Differentiate w.r.t. x or find dy/dx of : y = tan^-1((sqrt(1+a^2x^2) - 1)/ax)

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))