Home
Class 12
MATHS
" ờ "i^(2)=-1," tì "sum(n=1)^(200)i^(n)=...

" ờ "i^(2)=-1," tì "sum_(n=1)^(200)i^(n)=...

Promotional Banner

Similar Questions

Explore conceptually related problems

If i^(2)=-1 then the value of sum_(n=1)^(200)i^(n) is

If i^2=-1 ,then sum_(n=0)^225i^n is

sum_(j=1)^(n)sum_(i=1)^(n)i=

Let a_n is a positive term of a GP and sum_(n=1)^100 a_(2n + 1)= 200, sum_(n=1)^100 a_(2n) = 200 , find sum_(n=1)^200 a_(2n) = ?

Let a_n is a positive term of a GP and sum_(n=1)^100 a_(2n + 1)= 200, sum_(n=1)^100 a_(2n) = 200 , find sum_(n=1)^200 a_(2n) = ?

If i^2 = -1 , then the value of sum_(n=1)^200 i^n is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is