Home
Class 12
MATHS
Statement-1: In a !ABC, (a+b+c)(tanA/2...

Statement-1: In a `!ABC`,
`(a+b+c)(tanA/2+tanB/2)=2c cotC/2`
Statement-2: In a `!ABC`, a = b cos C + c cos B

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

Verified by Experts

Clearly, statement- 2 is true. (see projection formulae in theory)
Now,
`(a+b+c)(tanA/2+tanB/2)`
`=2s{(Delta)/(s(s-a))+(Delta)/(s(s-b))}`
`(2Delta)/((s-a)(s-b))(2s-a-b)=(2Deltac)/((s-a)(s-b))`
`=2csqrt((s(s-c))/((s-a)(s-b)))=2ccotC/2`
So, statement-1 is also true.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Exercise|98 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,(a+b+c)(tanA/2+tanB/2)=

Statement-1: In any !ABC , a cos A + b cos B + c cos C le s Statement-2 : In any !ABC,sinA/2sinB/2sinC/2le1/8

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

Statement I If in a triangle ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angle must be 90^(@). Statement II In any triangles ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)