Home
Class 12
MATHS
Statement-1: In a !ABC, if 2a^(2)+4b^(...

Statement-1: In a `!ABC`, if
`2a^(2)+4b^(2)+c^(2)=4ab+2ac`, then `cosA=1/4`
Statement-2: In a `DeltaA BC` if `cosA=1/4`, then
`(a+b+c)(b+c-a)=5/2bc`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

Verified by Experts

We have,
`2a^(2)+4b^(2)+c^(2)=4ab+2ac` …(i)
`rArr(a^(2)-2ac+c^(2))+(a^(2)-4ab+4b^(2))=0`
`rArr(a-c)^(2)+(a-2b)^(2)=0rArra=c` and a=2b
CASE I When a = c
Putting a = c in (i), we get c = 2b
`thereforea=c=2b`
`rArrcosA=(b^(2)+c^(2)-a^(2))/(2bc)=(b^(2))/(2ab)=(b^(2))/(4b^(2))=1/4`
CASE II When a = 2b
Putting a = 2b in (i), we get c = 2b.
`thereforea=c=2brArrcosA=1/4`
So, statement-I is true.
In a `DeltaABC`, if cosA`=1/4`, then
`(b^(2)+c^(2)-a^(2))/(2bc)=1/4rArrb^(2)+c^(2)-a^(2)=1/2bc`
`rArr(b+c)^(2)-a^(2)=5/2bcrArr(b+c-a)(b+c-a)=5/2bc`
So, statement-2 is also true.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Exercise|98 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

b^(2)+c^(2)+2bc+4b+4c

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Statement-1: If triangleABC, 3bc=(a-b+c)(a+b-c) then A=120^(@) . and Statement-2: cos 120^(@)=-1/2

Find the square root of : 4 a ^(2) + 9b ^(2) + c ^(2) - 12 ab + 6 bc - 4 ac

If a:b=4:5 and b:c=2:3, then a:c=

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to

If a:b = 4:5 and b:c = 2:3, then a:c=_____.

If a:b=1 3/4: 2 2/3 and b:c=4: 3 1/4 then a:b:c=